Strong Isometric Dimension, Biclique Coverings, and Sperner's Theorem

نویسندگان

  • Dalibor Froncek
  • Janja Jerebic
  • Sandi Klavzar
  • Petr Kovár
چکیده

The strong isometric dimension of a graphG is the least number k such that G isometrically embeds into the strong product of k paths. Using Sperner’s Theorem, the strong isometric dimension of the Hamming graphs K2 Kn is determined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biclique coverings, rectifier networks and the cost of $\varepsilon$-removal

We relate two complexity notions of bipartite graphs: the minimal weight biclique covering number Cov(G) and the minimal rectifier network size Rect(G) of a bipartite graph G. We show that there exist graphs with Cov(G) ≥ Rect(G). As a corollary, we establish that there exist nondeterministic finite automata (NFAs) with εtransitions, having n transitions total such that the smallest equivalent ...

متن کامل

An Infinitary Version of Sperner's Lemma

We prove an extension of the well-known combinatorial-topological lemma of E. Sperner [20] to the case of infinite-dimensional cubes. It is obtained as a corollary to an infinitary extension of the Lebesgue Covering Dimension Theorem .

متن کامل

Irreducible Coverings by Cliques and Sperner's Theorem

In this note it is proved that if a graph G of order n has an irreducible covering of its vertex set by n− k cliques, then its clique number ω(G) ≤ k + 1 if k = 2 or 3 and ω(G) ≤ ( k bk/2c) if k ≥ 4. These bounds are sharp if n ≥ k + 1 (for k = 2 or 3) and n ≥ k + ( k bk/2c) (for k ≥ 4).

متن کامل

The Combinatorics of Dom de Caen

We give an overview of some of the mathematical results of Dominique de Caen. These include a short proof of König’s theorem, results on Turán numbers, biclique partitions, clique coverings, hypergraphical Steiner systems, p-ranks, stellar permutations, the construction of new distance-regular graphs, large sets of equiangular lines, a bound on the probability of a union, and more.

متن کامل

The strong isometric dimension of finite reflexive graphs

The strong isometric dimension of a reflexive graph is related to its injective hull: both deal with embedding reflexive graphs in the strong product of paths. We give several upper and lower bounds for the strong isometric dimension of general graphs; the exact strong isometric dimension for cycles and hypercubes; and the isometric dimension for trees is found to within a factor of two.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorics, Probability & Computing

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2007