Strong Isometric Dimension, Biclique Coverings, and Sperner's Theorem
نویسندگان
چکیده
The strong isometric dimension of a graphG is the least number k such that G isometrically embeds into the strong product of k paths. Using Sperner’s Theorem, the strong isometric dimension of the Hamming graphs K2 Kn is determined.
منابع مشابه
Biclique coverings, rectifier networks and the cost of $\varepsilon$-removal
We relate two complexity notions of bipartite graphs: the minimal weight biclique covering number Cov(G) and the minimal rectifier network size Rect(G) of a bipartite graph G. We show that there exist graphs with Cov(G) ≥ Rect(G). As a corollary, we establish that there exist nondeterministic finite automata (NFAs) with εtransitions, having n transitions total such that the smallest equivalent ...
متن کاملAn Infinitary Version of Sperner's Lemma
We prove an extension of the well-known combinatorial-topological lemma of E. Sperner [20] to the case of infinite-dimensional cubes. It is obtained as a corollary to an infinitary extension of the Lebesgue Covering Dimension Theorem .
متن کاملIrreducible Coverings by Cliques and Sperner's Theorem
In this note it is proved that if a graph G of order n has an irreducible covering of its vertex set by n− k cliques, then its clique number ω(G) ≤ k + 1 if k = 2 or 3 and ω(G) ≤ ( k bk/2c) if k ≥ 4. These bounds are sharp if n ≥ k + 1 (for k = 2 or 3) and n ≥ k + ( k bk/2c) (for k ≥ 4).
متن کاملThe Combinatorics of Dom de Caen
We give an overview of some of the mathematical results of Dominique de Caen. These include a short proof of König’s theorem, results on Turán numbers, biclique partitions, clique coverings, hypergraphical Steiner systems, p-ranks, stellar permutations, the construction of new distance-regular graphs, large sets of equiangular lines, a bound on the probability of a union, and more.
متن کاملThe strong isometric dimension of finite reflexive graphs
The strong isometric dimension of a reflexive graph is related to its injective hull: both deal with embedding reflexive graphs in the strong product of paths. We give several upper and lower bounds for the strong isometric dimension of general graphs; the exact strong isometric dimension for cycles and hypercubes; and the isometric dimension for trees is found to within a factor of two.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Combinatorics, Probability & Computing
دوره 16 شماره
صفحات -
تاریخ انتشار 2007